Post

Some calculus about graph classes cardinalities

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from math import factorial, ceil

def fact(n):
    """
    n!
    <just as a reminder, we do prefer using C implementation of math library therefore>
    """
    if n == 0 :
        return 1
    else :
        return n * fact(n-1)

def binomial(n, k):
    """
    ( n )          n!
    |   |   =   ————————
    ( k )       k!(n-k)!
    """
    if (k > n):
        return 0
    elif (k == 2):
        # little speed-up
        return (n * (n-1)) // 2
    else:
        return factorial(n) // (factorial(k) * factorial(n - k))

def G_n(n):
    """
    number of not necessarly connected, labelled graph 
    on n vertices

    Each possible edge either exists, either doesn't :
        2 states possible ^ number of possible edges

    note : binomial(n, 2) = (n*(n-1)//2)
    
    OEIS A006125 (1, 2, 8, 64, 1024, 32768, ... )
    >>> print(list([G_n(n) for n in range(0, 10)]))
    """
    return 2 ** binomial(n, 2)

def G_nk(n, k):
    """
    number of not necessarly connected, labelled graph 
    on n vertices, k edges

    Very naive, take k pairs among all possible pairs of edges
    """
    return binomial(binomial(n, 2), k)

def C_n(n):
    """
    number of connected, labelled graph 
    on n vertices

    note : logarithmic transform of OEIS A006125 (G_n)

    sources :
    - Harary and Palmer, p. 7
    - http://mathworld.wolfram.com/LabeledGraph.html

    OEIS A001187 (1, 1, 1, 4, 38, 728, 26704, ... )
    >>> print(list([C_n(n) for n in range(0, 10)]))
    """
    if n == 0:
        return 1
    else :
        return 2 ** binomial(n, 2) - sum([
            k * binomial(n, k) * 2** binomial(n-k, 2) * C_n(k) 
            for k in range(1, n)
        ]) // n

def T_n(n):
    """
    Number of free labelled trees on n vertices
    note : k = n - 1

    source : 
     - Cayley's formula https://en.wikipedia.org/wiki/Cayley%27s_formula

    OEIS A000272 (1, 1, 1, 3, 16, 125, 1296, 16807, 262144, ... )
    >>> print(list([T_n(n) for n in range(0, 10)]))
    """
    if (n < 1):
        return 1
    else:
        return int(n ** (n - 2))

def C_nk(n, k):
    """
    Number of connected, labelled graphs 
    on n vertices, k edges
    
    sources :
    - Enumeration of Labelled Graphs - E. N. Gilbert (Theorem II) : http://oeis.org/A001187/a001187.pdf
    - https://math.stackexchange.com/questions/689526/how-many-connected-graphs-over-v-vertices-and-e-edges

    >>> [ (C_nk(n, k), k) for k in range( n - 1, binomial(n, 2)) ]
    """
    if k < n - 1 or k > binomial(n, 2) :
        return 0
    elif k == n - 1:
        # T_n(n) = n ** (n-2)
        return T_n(n)
    else:
        # G_nk(n, k) = binomial(binomial(n, 2), k)
        return G_nk(n, k) - sum([
            binomial(n - 1, m) * sum([
                binomial(((n - 1 - m) * (n - 2 - m) // 2), p) * C_nk(m + 1, k - p)
                for p in range(0, k)
            ])
            for m in range(0, n - 2)
         ])

def Ck_n(n):
    """
    number of connected, labelled graphs
    on n vertices, for each k fixed

    >>> [ max(Ck_n(n))[1] for n in range(3, 12) ] gives OEIS A054925
    """
    return [ (C_nk(n, k), k) for k in range( n - 1, binomial(n, 2)) ]

def MAX_Ck_n(n):
    """
    maximum number of labelled, connected graph
    on n vertices, but with a fixed k

    k_max is half the number of possible edges, as central polynomial coef. states
        binomial(n, p) is max when n = 2p
        ceil helps to find an int where we are in a case where max coef occurs twice

    => k_max = (n, 2) / (2 = n(n-1) / 2) /2 = n(n-1) / 4

    >>> [ MAX_Ck_n(n) for n in range(0, 10)] 
    """
    return C_nk(n, ceil((n*(n-1)) / 4))
This post is licensed under CC BY 4.0 by the author.